

PRACTICE

Use the diagram below to answer the questions that follow.

18. There are four different triangles in the diagram above. Name them all.

18. _____

19. Name the only equilateral triangle in the diagram above.

19. _____

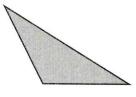
20. Name the two scalene triangles in the diagram above.

- 20. _____
- **21.** There are two isosceles triangles in the diagram above. Name them both. (Remember, a triangle with *at least* two equal side lengths is isosceles.)
- 21. ____

Every triangle can be described by its sides and by its angles. For example, triangle PQR is an isosceles acute triangle.

PRACTICE

Draw a line to connect each of the descriptions below to one of the drawings on the right. If a shape is impossible, connect it to the circle marked "Impossible".


22. An isosceles right triangle.

- **23.** A scalene obtuse triangle.
- **24.** An isosceles obtuse triangle.

25. A scalene right triangle.

26. An equilateral right triangle.

27. A scalene acute triangle.

PRACTICE

In the diagram below, RTUV is a square. Use the diagram to answer the questions that follow.

28. How many right triangles are in the diagram above?

28.

- **29.** Describe triangle TUV by its sides (equilateral, isosceles, or scalene) and by its angles (acute, right, or obtuse).
- 29. _____
- **30.** Describe triangle RST by its sides (equilateral, isosceles, or scalene) and by its angles (acute, right, or obtuse).
- 30. _____
- **31.** Describe triangle STW by its sides (equilateral, isosceles, or scalene) and by its angles (acute, right, or obtuse).
- 31. _____
- **32.** Name the only scalene right triangle in the diagram above.
- 32. _____
- **33.** Name the only isosceles obtuse triangle in the diagram above.
- 33. _____
- **34.** Name all three scalene obtuse triangles in the diagram above.
- 34. _____

ounting Triangles

When counting the number of triangles in a diagram, it helps to be organized.

First, find out how many different sizes of triangles there are. Then, count how many triangles there are of each size.

EXAMPLE

How many triangles of any size can be traced in the diagram below?

There are 8 small triangles,

4 medium triangles,

Count the total number of triangles of any size that can be traced in each of the diagrams below.

35.

36.

35. _____

36. _____

37.

38.

37. _____

38.