A quadrilateral with four equal side lengths is called a rhombus.

A quadrilateral that is both a rectangle and a rhombus is called a **square**.

ABCD is a rectangle.

EFGH is a rhombus.

JKLM is a rectangle, a rhombus, and a square.

When naming polygons with four or more sides, the corners must be listed in order around the shape. For example, rectangle ABCD above could be named BCDA, but *not* ABDC.

PRACTICE

- **39.** Draw a square that has its corners on four of the points below.
- **40.** Draw a rectangle that has its corners on four of the points below.

- **41.** Draw a rhombus that has its corners on four of the points below.
- 42. Draw a quadrilateral that has its corners on four of the points below.

PRACTICE

Draw a line to connect each of the descriptions below to one of the drawings on the right. If a shape is impossible, connect it to the circle marked "Impossible".

43. A rectangle that is not a square.

44. A quadrilateral with exactly one right angle.

45. A rhombus.

46. A quadrilateral with exactly two right angles.

47. A quadrilateral that has four acute angles.

48. A quadrilateral that can be cut into two acute triangles.

Beast Academy Practice 3A

EXAMPLE

If you answer
"false" for any of the
questions below, draw
a shape that shows
that the statement is
false.

True or False:

If you cut a square into two identical pieces, the pieces will always be triangles or rectangles.

This statement is **false**. It is possible to cut a square into two identical pieces that are not triangles or rectangles.

PRACTICE

Mark each statement below either true or false. For each false answer, draw a shape that shows that the statement is false.

49. All squares are rectangles.

49. _____

50. All rhombuses are squares.

50. _____

51. Every quadrilateral can be cut between two corners into two identical triangles.

51. _____

52. Any two identical triangles can be attached to make a quadrilateral.

52. _____

Any quadrilateral can be split into two smaller quadrilaterals by a straight line from the middle of one side to the middle of another side.

53. _____

How many different squares have all four corners on points in the grid below?

You can make these squares: four small squares, one big square, and one medium square.

There are a total of 4+1+1=6 squares. Watch out for tricky shapes in the problems below.

PRACTICE

Answer each shape-counting question below.

54. How many different *rhombuses* have all four corners on points in the grid below?

54. _____

55. How many different *rectangles* have all four corners on points in the grid below?

55. _____

. . . .

56.	How many different <i>squares</i> have all four corners on points in the	56
*	grid below?	
	• •	
	• • • •	
	• • •	
	• •	
57.	How many different <i>rhombuses</i> have all four corners on points in the	57
*	grid below?	
	•	
	• •	
	•	
	• •	
	•	
58 .	How many different <i>rectangles</i> have all four corners on points in the	58
*	grid below?	
*		
	•	

Five sides:

Six sides:

Seven sides:

The shapes above are all *regular*. A shape is regular if all its sides and angles are the same. Not all polygons are regular.

PRACTICE

Label each shape below as a pentagon, hexagon, heptagon, octagon, nonagon, or decagon.

59.

60.

61.

59. _____

60. _____

61. _____

62.

63.

64.

62. _____

63. _____

64. _____

65. All quadrilaterals have two diagonals. Draw the two diagonals for each quadrilateral below.

66. All pentagons have the same number of diagonals. How many diagonals does a pentagon have?

67. All hexagons have the same number of diagonals. How many diagonals does a hexagon have?

A heptagon has 14 diagonals, and an octagon has 20. Look for a pattern in the number of diagonals of a quadrilateral, pentagon, hexagon, heptagon, and octagon. Continue the pattern to guess the number of diagonals of a nonagon.

68. _____